Varied Fluency Step 8: Volume of a Cuboid

Teaching Note:

The formula for volume is $l \times w \times h$ where l is horizontal, w is diagonal and h is vertical.

National Curriculum Objectives:

Mathematics Year 6: (6M8a) <u>Calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3]</u>
Mathematics Year 6: (6M7c) <u>Recognise when it is possible to use formulae for the area of shapes</u>

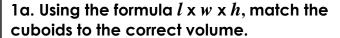
Differentiation:

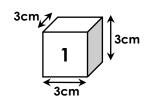
Developing Questions to support calculating the volume of cuboids using $l \times w \times h$ or area of base x height. Same metric measures used within each question; multiples of 2, 3, 5 and 10 only.

Expected Questions to support calculating the volume of cuboids using $l \times w \times h$ or area of base x height. Some conversion between metric measures needed (mm to cm or cm to m). Same metric measures used within each question; whole unit measurements.

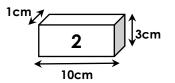
Greater Depth Questions to support calculating the volume of cuboids using $l \times w \times h$ or area of base x height. Some conversions between metric measures needed (mm to m or m to mm); some measurements with 1 decimal place used.

More <u>Perimeter</u>, <u>Area and Volume</u> resources.

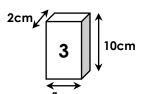

Did you like this resource? Don't forget to review it on our website.

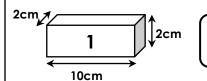


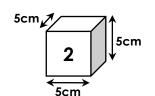
classroomsecrets.co.uk


Volume of a Cuboid

Volume of a Cuboid





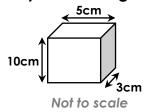


C. 100cm³

1b. Using the formula $l \times w \times h$, match the cuboids to the correct volume.

A. 40cm³

B. 30cm³


C. 125cm³

Not to scale

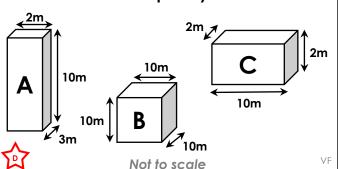
2a. True or false? I can find the volume of this cuboid by calculating 50cm² x 5cm.

Not to scale

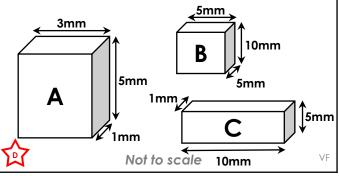
2b. True or false? I can find the volume of this cuboid by calculating $6cm^2 \times 10cm$.

3a. Complete the table.

	l	w	h	v
Cuboid 1	3m	10m	5m	
Cube	2cm	2cm	2cm	
Cuboid 2	10cm		2cm	60cm ³


3b. Complete the table.

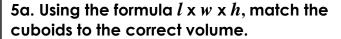
	l	w	h	v
Cuboid 1		2cm	10cm	100cm ³
Cuboid 2	3mm	10mm	10mm	
Cuboid 3	5m	10m	5m	
		•	•	

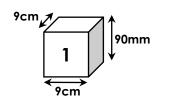


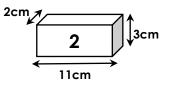
/F D

4a. Order these shapes by their volume.

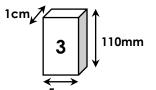
4b. Order these shapes by their volume.

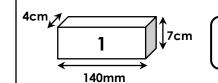


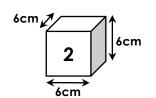

classroomsecrets.co.uk


Volume of a Cuboid

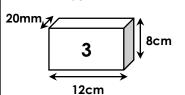
Volume of a Cuboid







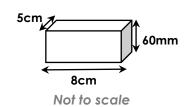
C. 66cm³

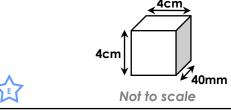

5b. Using the formula $l \times w \times h$, match the cuboids to the correct volume.

A. 192cm³

B. 216cm³

C. 392cm³


VF

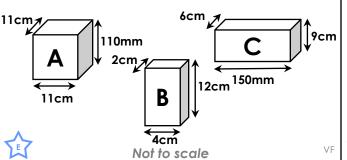

Not to scale

6a. True or false? I can find the volume of this cuboid by calculating 30cm² x 8cm.

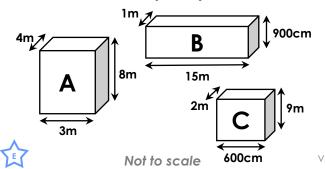
Not to scale

6b. True or false? I can find the volume of this cuboid by calculating 8cm² x 4cm.

7a. Complete the table.


	l	w	h	v
Cuboid 1	4m	7m	500cm	
Cuboid 2	11cm		4cm	88cm ³
Cube		8cm		512cm ³

7b. Complete the table.

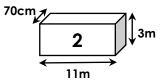

	l	w	h	v
Cube				8cm³
Cuboid 1	6mm		4mm	216mm ³
Cuboid 2	600cm	7m	11m	
^				

8a. Order these shapes by their volume.

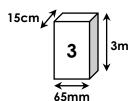
8b. Order these shapes by their volume.

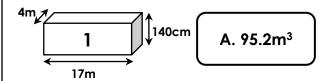
classroomsecrets.co.uk

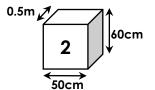
TET

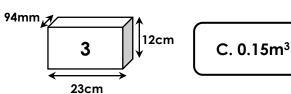

Volume of a Cuboid

Volume of a Cuboid



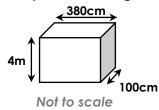


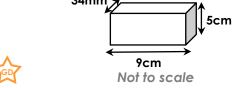



C. 216cm³

9b. Match the cuboids to their correct volume.

B. 2,594.4cm³

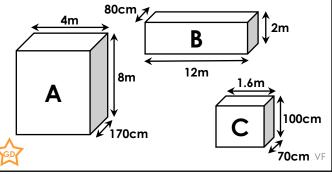



Not to scale

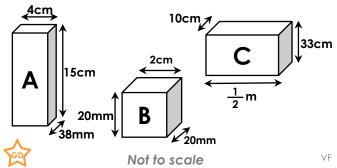
10a. True or false? I can find the volume of this cuboid by calculating $4m^2 \times 3.8m$.

Not to scale

10b. True or false? I can find the volume of this cuboid by calculating 45cm² x 34cm.


	l	w	h	v
Cuboid 1	1.7m	cm	7m	9.52m ³
Cuboid 2	50mm	cm	4.2cm	73,500 mm ³
Cuboid 3	180cm	2.5m	11m	m³

11b. Complete the table.


	l	w	h	v
Cuboid 1	80mm	5cm	1.5cm	cm³
Cube	cm	cm	cm	729m³
Cuboid 2	4m	1.7m	350cm	m³

12a. Order these shapes by their volume.

12b. Order these shapes by their volume.

classroomsecrets.co.uk

<u>Varied Fluency</u> Volume of a Cuboid

<u>Varied Fluency</u> Volume of a Cuboid

Developing

1a. 1B, 2A, 3C

2a. False. 50cm² x 3cm or 30cm² x 5cm

3a.

	l	w	h	٧
Cuboid 1	3m	10m	5m	150m³
Cube	2cm	2cm	2cm	8cm³
Cuboid 2	10cm	3cm	2cm	60cm³

4a. C = 40m³, A = 60m³, B = 1,000m³ (or vice versa)

Expected

5a. 1B, 2C, 3A

6a. True

7a.

	l	w	h	٧
Cuboid 1	4m	7m	500cm	140m³
Cuboid 2	11cm	2cm	4cm	88cm³
Cube	8cm	8cm	8cm	512cm³

8a. A = 1,331cm³, C = 810cm³, B = 96cm³ (or vice versa)

Greater Depth

9a. 1C, 2B, 3A

10a. True

11a.

•		l	w	h	٧
	Cuboid 1	1.7m	80cm	7m	9.52m³
	Cuboid 2	50mm	3.5cm	4.2cm	73,500 mm³
	Cuboid 3	180cm	2.5m	11m	49.5m³

12a. A = 54.4m³, B = 19.2m³, C = 1.12m³ (or vice versa)

Developing

1b. 1A, 2C, 3B

2b. True

3b.

	l	w	h	v
Cuboid 1	5cm	2cm	10cm	100cm³
Cuboid 2	3mm	10mm	10mm	300mm ³
Cuboid 3	5m	10m	5m	250m³

4b. A = 15mm³, C = 50mm³, B = 250mm³ (or vice versa)

Expected

5b. 1C, 2B, 3A

6b. False. $4 \times 4 = 16$, so you could use $16 \text{cm}^2 \times 4 \text{cm}$ to find the volume.

7b.

	l	w	h	v
Cube	2cm	2cm	2cm	8cm³
Cuboid 1	6mm	9mm	4mm	216mm³
Cuboid 2	600cm	7m	11m	462m³

8b. A = 96m³, C = 108m³, B = 135m³ (or vice versa)

Greater Depth

9b. 1A, 2C, 3B

10b. False. You need to convert 34mm into 3.4cm; 45cm² x 3.4cm

11b.

•		74 01 10	•••		
•		l	w	h	٧
	Cuboid 1	80mm	5cm	1.5cm	60cm³
	Cube	900cm	900cm	900cm	729m³
	Cuboid 2	4m	1.7m	350cm	23.8m³

12b. B = 8cm³, A = 228cm³, C = 16,500cm³ (or vice versa)